Al-First Governed Software
Development

A practical methodology for developing with Al
under explicit technical governance.

Manuel J. Gonzalez Lopez
CTO - ARQUITECTO DE SISTEMAS - Al GOVERNANCE

Al-First Governed Software Development

Indice
o) dfeTe [BTeTo1 (o] o TN PR PP PPPRt 4
A quién va dirigida esta Metodologia. ... oveuuiiiiniiiiiiiiiie ettt e 5
Responsabilidades y perfiles implicados en el desarrollo Al-First......ccceveuveniiiiiinieniinnennes 6
Responsabilidad sobre la arquitecturay el sistema de desarrollo.......cccevevnveniennnnnen. 6
Responsabilidad sobre eluso de lAen el desarrollo......ccceueeeieiiiiiiiiniiiinninnieeeeeennens 7
Responsabilidad sobre datasets, contexto y modelos usados en desarrollo 7
Responsabilidad sobre calidad, validacién y revision asistida por lA........cccoeveveennennns 8
Responsabilidad sobre la evoluciény el aprendizaje del sistema.....c..ccceeeveiiniinnanns 10
Principios fundacionales de la metodologia.......coivviuiiiiiiiiiiiiiiiii e 10
Principio 1 La velocidad sin arquitectura no genera valor sostenibleccccceeeiinnenne 11
Principio 2 El cédigo no es el objetivo, pero sigue siendo un activo critico 11
Principio 3 La estandarizacidn protege el sistema frente a la improvisacion 11
Principio 4 El verdadero coste del software esta en suciclodevidacccccevieniinnnns 12
Principio 5 Sin gobierno explicito, la IA convierte el desarrollo en una caja negra. 12
Principio 6 La arquitectura es el mecanismo real de gobierno del desarrollo 12
Principio 7 La responsabilidad técnica no se automatizaccc.ceeveeeiieeiiiniineiineiinnennns 12
Qué define esta Metodologia Y QUE NO ..ceuieniiiiiiiiii e ee e e e e ee e eeeannaenns 13
COmo usar €sta METOdOLOZIA ...uiuiiiiiiiiii e e e e e eaesansesan s e s anaanns 14
FasesS delMETOO c.cuuiiieiiiiiiiiiiii ettt et et et e 15
Qué se obtiene en las primeras sesiones de trabajocccueveeveieiiiiiiiiiiieeeeeeeeeeeeenns 15
Fase 1 Diagndstico de gobernabilidad y evolucion del softwarecccoeeeveveiineiinnnnnnns 16
1. Identificar el tipo de organizacidon y su modelo de desarrolloccceeevieniininnnnns 16
2. Entender el sectory el impacto del softwareccceueieiiiiiiiiiiiiiiiiec e, 17
3. Clasificar el tipo de software existente y futUroccceeeieviiiiiiiiiiiinie e, 17
4. Analizar como entrahoy lalAen el desarrollo.......ceeeieeeenieiiiieiiiiee e eeeeeenns 18
5. Localizar dénde vive hoy €Ll CONTIOL ..ceuivniiniiniiiiiiieie et e e 18
6. Evaluar la preparacion para software con IAintegrada.........coovvevviviiiciiciiniinnnnnen. 19
QUE SE ObTIENE B LA FASE Tauninieiiii e e eaens 19
Artefactos de la Fase T.... i e 19
CheCKLST . ceuuiiiiiiiiii e e 20
Fase 2 Definicidn del sistema de desarrollo asistido porlAccoveeiieiiiiiiiiiiiieiieeennns 21
1. Determinar qué software puede y qué software no puede usar lAccceeneennenns 22
2. Analizar el contexto organizativo del desarrollo......ccceveeiuiiiiiiiiieniniiniie e, 23
3. Validar el marco legaly CONtraCtualc.veuveuriniiiiiiiiiiiiiiiiiinriiree e eeeeneeneennens 23

Manuel j. Gonzalez Lépez Pagina 1|43

Al-First Governed Software Development

4. Definirelmarco de referenCia tECNICO ...viveviiiiiiiiiiiiii ittt eee e eeae e 24
5. Definircomo entralalAen el desarrollo.......ceueveeeiiiiniiiiiiiiiiieieicr e, 24
6. Anticipar la A integrada en el propio SOftWarec.cceiveieiiiiiiiiiinin e 25
7. QUE SE ODtIENE A LA FASE 2.uinieiiiiiiiiii ettt e e eaeaeenens 25
Artefacto clave de laFase 2. ... 25
(03 1] A1 PP UPP PR PRPPRPRt 26
Fase 3 Gobierno del codigo y del modelo de desarrollo........coevuveuiiuiiniinnienieneeniennennenns 27
1. Definir qué repositorios forman parte del sistema gobernadoc..ccceveevivniennenns 27
2. Definir reglas claras de versionado Y ramas....cccue e eeeienieniiniiiniineneeneeeeeeeeeeeennens 28
3. Gobierno del COIZO PrOPIO «vveiieiiiiiieiiie ittt et et s e s easensenesensennsannns 28
4. Gobierno del cédigo de frameworks y dependencias......ccceveeeiineiineiiieiiieennennnen. 29
5. Gobierno de la documentacion como parte del conocimientocccceeevnieniennennen. 29
6. Definir qué conocimiento puede usarse para entrenamiento o adaptacion 30
7. Implicaciones sobre el modelo de desarrollocceeveevenriniiiiiiiiiiiieee e 30
Responsabilidades que aparecenenlaFase 3.......couiiiiniiiiiiiiiii e 30
Qué se obtieNe de la Fase B.....cuiiiiiiiiieiie et e et e it et e e e e e eas 31
Artefactos de la Fase 3.... i e 31
ChECKLST . ceveiiiiiiiii et ettt et e e 32
Fase 4 Observabilidad y control del desarrollo asistido porlA........ccoeeviiiiiiiiiieiiinrennennen. 33
1. Qué significa observabilidad en este contexto.......ccceevveieniiiiiiiiiiiiiiiiiiniciineee, 33
2. Registrar la generacion como un evento gobernadoccceeveviieiiiiiieiinnienenannns 33
3. Relacionar generacion, decision y resultado final.......ccceveiiiiiiiiiiiiiniiciciieeenne, 34
4. Auditar y monitorizar el comportamiento del sistema de desarrollo 34
5. Extraer conocimiento y normas a partir de la observacionc.ccceeeeevveeenvennnn.n. 34
6. Diferenciar claramente observabilidad de aprendizajecceveveeenieieniiiennenennnn... 35
QUE SE ODLTIENE A LA FASE 4.t eeas 35
Artefactos de la FaSE 4.....iuniiiiiiiiiii e 35
(0 T=Tod - PP PP PP PP 36
Fase 5 Aprendizaje gobernado y evolucion del sistemacceeuveiiiiiiiiiiiiiiiiieiieee e, 37
1. ELobjetivoreal de €Stafase ...cuuieiniiiiie e aas 37
2. Aprender es inevitable, hacerlo sin CoONtrol N0ccuieiiiiiiiiiiiiir e, 38
3. Qué significa “aprendizaje gobernado”cccviiiiiiiiiiiiiiiieee e 38
4. El papel central del desarrollador (Human-in-the-Loop)ceeueveeeeinerinceinceinennnees 38
5. Fuentes validas de aprendizaje.......cieuieeiiiiiiiiiiie et ettt e ee e e e e e aaaas 39
6. Evolucion frente a 0bSOLlESCENCIA . oevvvneiiiiiiiiiiciiiee e 39

Manuel j. Gonzalez Ldépez Pagina 2|43

Al-First Governed Software Development

7. Cambios de roles y responsabilidades (Sin ruptura)cccceeeeveieiiiiieiiciiceeneieennen. 39
Qué se obtiene al completar la Fase 5viuiieiiiiiiiiiiiiie e 40
Artefactos de laFase 5. 40
L aT=T o1 {1 PP 40
Una vision practica del desarrollo Al-FirSt..... ettt eeeeeeee e eens 42

Nota sobre autoria y uso

Este documento recoge un marco de trabajo y una metodologia desarrollados a
partir de experiencia profesional en disefio, desarrollo y operacién de sistemas de
software durante mas de tres décadas.

Su contenido puede ser leido, utilizado y adaptado libremente en contextos
profesionales y organizativos.

Se permite su uso total o parcial siempre que se mantenga la referencia a su autoria
original.

No se permite su redistribucién como producto propio ni su comercializacién como
metodologia de terceros sin atribucidon expresa.

© Manuel José Gonzalez Lépez, 2026

Manuel j. Gonzalez Ldépez Pagina 3|43

Al-First Governed Software Development

Introduccion
Al-First en desarrollo: acelerar sin perder el control

Escribir cédigo ya no es el principal cuello de botella. La IA ha reducido
drasticamente el esfuerzo de desarrollo y eso es una realidad.

El problema aparece cuando esa reduccién de coste lleva a una conclusion
equivocada: que el cédigo ya no tiene valor. Lo que ha perdido valor es el esfuerzo
mecanico de escribirlo. No el conocimiento ni las decisiones que el codigo
encapsula.

Hoy se esta generando software cada vez mas rapido sin haber redisefado el
sistema que gobierna cdmo se desarrolla. Se acelera la produccién, pero no el
control. Y cuando eso ocurre, la arquitectura se degrada, la dependencia aumenta
y laresponsabilidad se diluye.

ELIDE ya no es una herramienta pasiva. El modelo propone estructuras, introduce
dependencias y condiciona la arquitectura, muchas veces sin que nadie lo haya
decidido explicitamente. Sin embargo, seguimos trabajando con roles y procesos
pensados para un desarrollo manual que ya no existe.

Este enfoque nace de afos disefiando plataformas que generan software (low-
code, no-code y multicode)y de haber visto repetirse siempre el mismo patrén:
cuando la generacién se acelera sin gobierno, el sistema pierde coherencia y
control. La IA no ha creado este problema, lo ha amplificado.

Al-First aplicado al desarrollo no significa usar |A en todas partes. Significa disefiar
explicitamente el sistema que decide qué se puede generar, bajo qué reglas, como
se valida, qué se aprende y quién responde cuando algo falla.

Esta metodologia existe para una sola cosa: ganar velocidad sin perder el control
del sistema

Manuel j. Gonzalez Lépez Pagina 4|43

Al-First Governed Software Development

A quién va dirigida esta metodologia

Esta metodologia estd pensada para organizaciones y profesionales que
desarrollan software que debe mantenerse y evolucionar en el tiempo, y que
estan incorporando la IA de forma estructural en su proceso de desarrollo o en el
propio producto.

No esta orientada a aprender a usar herramientas de A,
ni a acelerar pruebas aisladas o prototipos sin impacto real.

Esta dirigida principalmente a:

e CTOs yresponsables de tecnologia
que necesitan introducir IA sin perder control sobre arquitectura,
calidad y evolucién.

e Arquitectos de software y de soluciones
que disefian marcos técnicos, definen estandares y gobiernan el
desarrollo a escala.

o Responsables de plataformas, ingenieria o desarrollo
que deben equilibrar velocidad, coherencia y sostenibilidad del
sistema.

e Organizaciones con software critico
(producto propio, SaaS, ERP, sistemas core, desarrollo a medida)
donde los errores tienen impacto real en negocio, clientes o usuarios.

Aplica especialmente en contextos como:

e empresas de producto o software empresarial,

e plataformas SaaS en evolucién continua,

e grandes corporaciones con desarrollo interno,

e consultorasy software factories con marcos técnicos propios,

e organizaciones con rotacion de equipos y necesidad de continuidad
técnica.

No esta pensada para:

e aprender a programar,

e experimentar con prompts de forma individual,

e proyectos efimeros sin mantenimiento,

e demos, POCs o pruebas aisladas sin paso a produccioén,

e equipos que no necesitan gobernar arquitectura ni evolucion.

Manuel j. Gonzalez Lépez Pagina 5|43

Al-First Governed Software Development

La metodologia no impide estos usos, pero no esta disenada para ellos.

Si una organizacién, utiliza IA en el desarrollo, quiere ganar velocidad, y no esta

dispuesta a perder control sobre su sistema, esta metodologia es aplicable.

Si el objetivo es unicamente experimentar sin gobernar consecuencias, esta

metodologia no es necesaria.

Responsabilidades y perfiles implicados en el

desarrollo Al-First

Esta metodologia no introduce nuevos roles ni propone reorganizaciones formales.

Parte de una realidad simple: cuando la IA entra en el desarrollo de software,

ciertas responsabilidades deben hacerse explicitas o el sistema pierde control.

La metodologia asume que estas responsabilidades pueden recaer:

e enunasola persona,
e envarias,
e repartidas entre perfiles internos y externos,
dependiendo del tamafo, madurez y estructura de cada organizacion.

Lo importante no es el cargo, sino que la responsabilidad exista y esté clara.

Responsabilidad sobre la arquitecturay el sistema de desarrollo

Debe existir una responsabilidad técnica clara sobre:

e laarquitectura del sistema,

e los patrones de desarrollo,

e los frameworksy versiones soportadas,

e ycomo seintegralalAen el ciclo de vida del software.

Esta responsabilidad garantiza la coherencia técnica y la sostenibilidad del

sistema, no decide la logica de negocio.

Perfil habitual
CTO, Arquitecto de software, arquitecto de soluciones o responsable técnico
senior.

No se trata de decidir la légica de negocio, sino de garantizar coherencia técnica

y sostenibilidad.

Manuel j. Gonzalez Ldépez Pagina 6|43

Al-First Governed Software Development

Responsabilidad sobre el uso de |IA en el desarrollo

Debe existir una responsabilidad explicita sobre:

e dodnde se permite usar IA en el desarrollo,
e conqué limites,
e ybajo qué condiciones técnicas.

Incluye decisiones como:

qué puede generar la IA,

qué partes del sistema no debe tocar,
cuando es obligatoria la supervision humana.

Esta responsabilidad no deberia recaer en perfiles puramente funcionales o
administrativos.

Perfil habitual
Arquitectura, liderazgo técnico o responsables del sistema de desarrollo.

Responsabilidad sobre datasets, contexto y modelos usados en
desarrollo

Alguien debe asumir la responsabilidad de preparar, mantener y poner a
disposicion:

o los datasets utilizados como referencia,
e el contexto técnico (cédigo, documentacién, ejemplos),
e ylos modelos o adaptaciones que usaran los desarrolladores.

No se trata de entrenar modelos genéricos, sino de:

e decidir qué conocimiento técnico es valido,

e normalizarlo y versionarlo,

e ygarantizar que la IA trabaja con un contexto coherente con la arquitectura
real.

El objetivo no es que cada desarrollador “use la IA a su manera”, sino que la IA
opere sobre un conocimiento técnico gobernado.

Perfil habitual

Arquitectura de software, plataformas internas de desarrollo, equipos técnicos
responsables del framework interno.

En organizaciones pequenfas, esta responsabilidad suele recaeren el CTO o
arquitecto principal.

Manuel j. Gonzalez Ldépez Pagina 7|43

Al-First Governed Software Development

Responsabilidad sobre calidad, validacion y revision asistida por IA
En un desarrollo Al-First, la calidad no puede depender uUnicamente de
herramientas cldsicas de QA ni de revisiones manuales puntuales.

Debe existir una responsabilidad explicita sobre:

e lavalidacion del cédigo generado o modificado con IA,
e larevision del cumplimiento de arquitecturay patrones,
e yladetecciontemprana de desviaciones técnicas o funcionales.

Con eluso de LLMs, esta responsabilidad se amplia de forma significativa.

Es posible crear agentes de revisién que analicen el cédigo como si fuera un
sistema de conocimiento:

e recorriendo repositorios completos,

e entendiendo relaciones entre componentes,

e y evaluando el codigo como un conjunto coherente, no como ficheros
aislados.

Estos agentes pueden:

revisar cumplimiento de patrones arquitecténicos,

o detectarinconsistencias entre capas,

e senalaruso incorrecto de frameworks o versiones,

e validar decisiones de diseno,

e eincluso contrastar implementacion con especificaciones funcionales.

Esto no sustituye al criterio humano. Lo refuerza.
Relacion entre QA asistido por IAy herramientas clasicas

Las herramientas tradicionales de calidad (tests, linters, analisis estatico,
pipelines) siguen siendo necesarias, pero dejan de ser suficientes por si solas.

La A permite:

e analizar lo que las herramientas no entienden (intencion, coherencia,
diseno),
e yhacerlo de forma continua, no solo al final del ciclo.

EL QA deja de ser una fase reactivay pasa a ser una capacidad activa del sistema
de desarrollo.

Manuel j. Gonzalez Ldépez Pagina 8|43

Al-First Governed Software Development

Perfil habitual que asume esta responsabilidad
Esta responsabilidad puede recaer en:

e responsables de calidad técnica,

e arquitectos,

e liderazgo técnico,

e equipos de plataforma de desarrollo.

No debe recaer exclusivamente en herramientas automaticas ni en desarrolladores
individuales actuando de forma aislada.

El QA asistido por IA no es un reemplazo del equipo, es una extensidon de su
capacidad de revision.

Relacion con aprendizaje y evolucién
Los resultados del QA asistido por IA son una fuente clave para:

o detectar errores recurrentes,

e identificar malas practicas,

e ajustarreglas y contexto,

e ymejorar progresivamente el sistema de desarrollo.

Cuando estos resultados no se registran ni se analizan:

e los mismos errores reaparecen,
e ylalAaprende ruido en lugar de criterio.

En un desarrollo Al-First, la calidad ya no es solo comprobar si el cédigo funciona.
Es comprobar si el sistema sigue siendo coherente mientras evoluciona mas
rapido.

Responsabilidad sobre excepciones al marco definido

Las excepciones son inevitables en sistemas reales. Lo que no es aceptable es que
sean invisibles.

Toda excepcidn relevante debe:

e tenerunresponsable técnico explicito,
e quedarregistrada,
e ypoderrevisarse cuando el sistema evoluciona.

Manuel j. Gonzalez Ldépez Pagina 9|43

Al-First Governed Software Development

No se trata de aprobar cada linea de cédigo, sino de asumir conscientemente las
decisiones fuera del estandar.

Perfil habitual
Arquitectura o liderazgo técnico, en coordinacion con desarrollo.

Responsabilidad sobre la evoluciony el aprendizaje del sistema

Cuando el sistema evoluciona (por cambios tecnolégicos, decisiones humanas o
aprendizaje asistido por |A) alguien debe decidir:

e qué seincorpora como nuevo estandar,
e Qué se descarta,
e yquénodebe repetirse.

El desarrollador no desaparece. Cambia su rol: pasa de ejecutar decisiones a
supervisar, validar y aportar criterio técnico.

Perfil habitual
Arquitecturay responsables técnicos senior, con participacion activa de los
desarrolladores.

Nota final

Esta metodologia no exige comités ni estructuras pesadas. Exige algo mas simpley
dificil: que las responsabilidades no queden implicitas.

En desarrollo, los problemas no aparecen porque falten normas, sino porque nadie
sabe quién debia decidir cuando algo se sali6 del marco.

Principios fundacionales de la metodologia

Estos principios no pretenden defender el valor del cddigo por nostalgia ni por
oficio. Pretenden ponerlo en su lugar correcto dentro de sistemas que deben
funcionar, mantenerse y evolucionar en el tiempo. La IA no elimina estos
principios. Los hace visibles.

Manuel j. Gonzalez Lépez Pagina 10|43

Al-First Governed Software Development

Principio 1 La velocidad sin arquitectura no genera valor sostenible

Acelerar el desarrollo siempre ha sido posible. Lo complejo siempre ha sido
mantenery evolucionar lo construido.

Cuando la velocidad no esta gobernada por una arquitectura explicita:

e elconocimiento se fragmenta,
e el control se diluye,
e yladependencia aumenta.

La lAincrementa la velocidad. Sin arquitectura, incrementa también el riesgo.

Principio 2 El cédigo no es el objetivo, pero sigue siendo un activo
critico

El valor del software no esta en escribir lineas de cddigo, pero el codigo sigue
siendo el soporte donde ese valor se materializa.

Negar la importancia del cédigo no lo hace desaparecer. Solo hace que se vuelva
opaco, fragily dificil de gobernar.

Cuando el codigo no se trata como un activo vivo:

e el mantenimiento se encarece,

e laevolucion seralentiza,

e yelsistema pierde capacidad de adaptacion.
Principio 3 La estandarizacion protege el sistema frente a la
improvisacion

La estandarizacion no existe para limitar creatividad. Existe para preservar
coherencia a largo plazo.

Cuando:

e |os patrones son claros,
e los componentes estan definidos,

o ylasreglas son explicitas,

romper el marco cuesta mas que seguirlo. Y eso protege al sistema incluso cuando
cambian las personas.

Manuel j. Gonzalez Lépez Pagina 11]43

Al-First Governed Software Development

Principio 4 El verdadero coste del software esta en su ciclo de vida

La construccion inicial representa una parte menor del coste total. La mayor
inversidon esta en mantener, adaptar y evolucionar el sistema.

Ignorar esta realidad conduce a soluciones rapidas pero fragiles. La |IA acelera la
construccion, pero no elimina la responsabilidad sobre el ciclo de vida.

Principio 5 Sin gobierno explicito, la IA convierte el desarrollo en
una caja negra

La IA puede generar codigo, pero no entiende el sistema completo. Cuando:

e no hay criterios comunes,
¢ no hay limites claros,
e yno haytrazabilidad,

el resultado puede funcionar a corto plazo, pero se vuelve incomprensible y dificil
de sostener.

La IA sin gobierno no elimina complejidad. La oculta.
Principio 6 La arquitectura es el mecanismo real de gobierno del

desarrollo

La arquitectura no es documentacion ni diagramas. Es el conjunto de decisiones
que determinan cdmo se construye, se validay se mantiene el software.

Con IA, la arquitectura no pierde relevancia. Se convierte en el Unico punto de
control efectivo.

Principio 7 La responsabilidad técnica no se automatiza

La IA puede asistir, proponery ejecutar. La responsabilidad sigue siendo humana.
El desarrollador no desaparece. Su rol evoluciona hacia:

e supervision,
e validacion,

e ygarantia de coherencia del sistema.

Eliminar al humano del proceso no es eficiencia. Es renunciar al control.

Manuel j. Gonzalez Lépez Pagina 12|43

Al-First Governed Software Development

Decir que “el codigo ya no tiene valor” es una simplificacion peligrosa. El valor
no esta en escribir codigo por escribirlo, pero todo sistema critico sigue
dependiendo de como ese cddigo se genera, se gobiernay se mantiene.

Esta metodologia no defiende el cédigo como fin. Defiende el sistema que lo
producey lo sostiene en el tiempo. La IA no sustituye ese sistema. Lo exige.

Qué define esta metodologiay qué no

Esta metodologia define como disenar y gobernar un sistema de desarrollo Al-First
cuando el software es critico y debe mantenerse en el tiempo.

No es un manual de herramientas ni una guia para elegir modelos concretos.
Tampoco pretende estandarizar arquitecturas, proveedores o stacks técnicos.

El motivo es simple: esas decisiones dependen del contexto.

Dos organizaciones pueden aplicar esta metodologia de forma correcta y llegar a
decisiones técnicas distintas, ambas validas, porque:

e operan en sectores diferentes,

e tienen niveles de riesgo distintos,

e parten de arquitecturas previas distintas,

e y estan sujetas a restricciones legales, técnicas u organizativas
diferentes.

La metodologia se centra en definir:

e qué decisiones deben tomarse,
e enquéorden,
e con qué criterios,

e ycon qué mecanismos de control.

Define qué debe gobernarse antes de escalar el uso de IA en el desarrollo de
software.

No prescribe:

e qué modelo utilizar,

e sidebe ser comercial u open source,

e sieldespliegue es on-premise, cloud o hibrido,

e si la IA se integra mediante IDEs, agentes, servicios 0 componentes
internos,

e nielcoste olainfraestructura concreta necesaria.

Manuel j. Gonzalez Lépez Pagina 13|43

Al-First Governed Software Development

No porque estos aspectos no sean importantes, sino porque no pueden decidirse
de forma genérica sin analizar el sistema, el negocio y los riesgos reales.

Esas decisiones forman parte del trabajo de implantacion, no del marco
metodolégico.

Esta metodologia no pretende decir cémo implementar IA, sino como evitar perder
el control cuando se hace. A partir de aqui, las fases del método describen:

e como analizar el contexto real,

como definir el sistema de desarrollo,

cémo gobernar el cédigo y el conocimiento técnico,

como asegurar observabilidad y trazabilidad,
e ycdémo permitir evolucidon y aprendizaje sin degradar el sistema.

La implementacién concreta (modelos, costes, herramientas y arquitectura)
es consecuencia de aplicar correctamente estas fases, no su punto de partida.

Si una organizacidn busca una receta rapida o una lista de herramientas,
este documento no es suficiente.

Si lo que necesita es un marco sélido para tomar decisiones correctas antes de
automatizar, esta metodologia aplica.

Como usar esta metodologia

Esta metodologia no esta pensada para “implantarse” como un paquete cerrado ni
para ejecutarse como una secuencia rigida de pasos. Esta pensada para ordenar
el desarrollo asistido por IA desde el sistema completo, no desde una
herramienta concreta ni desde una moda tecnoldgica.

No exige cambiar de stack, de frameworks ni de proveedores. Exige algo mas basico
y mas dificil: hacer explicitas decisiones, limites y responsabilidades que
normalmente quedan implicitas.

En la practica, se utiliza como un marco de analisis y disefio que permite:

e entender donde la |A puede aportar valor real,

e identificar donde introduce riesgo si se aplica sin control,

o ydefinir como debe integrarse en el desarrollo sin romper la gobernabilidad
del sistema.

La metodologia puede recorrerse de forma incremental. No es necesario tener
todas las fases “perfectas” para avanzar, pero si es importante no saltarse fases
sin ser consciente de las consecuencias.

Manuel j. Gonzalez Ldépez Pagina 14|43

Al-First Governed Software Development

Fases del método
Elrecorrido para implantar Al-First en desarrollo

Este método se estructura en 5 fases. No son principios. No son opcionales. Son
etapas que se recorren, aunque el ritmo y la profundidad varien segun la
organizacion. No es un “todo o nada”. Es un proceso acumulativo.

Qué se obtiene en las primeras sesiones de trabajo

Aplicar esta metodologia no empieza generando mas cdédigo ni mas agentes.
Empieza aclarando como se esta desarrollando software cuando la IA entra en
el proceso.

En las primeras sesiones de trabajo, el resultado habitual es:

e Unavisién clara de como se toman hoy las decisiones técnicas cuando se
usa lA en el desarrollo:
o decisiones de diseno,
o decisiones de arquitectura,
o decisiones de generacion de cédigo,
o ydecisiones de evolucion.
e Identificacidon de donde la IA ya esta influyendo en el cddigo sin que exista
un marco técnico explicito:
o versiones no controladas,
o patronesinconsistentes,
o decisiones implicitas en prompts o agentes.
e Separacion clara entre:
o codigo que puede generarse de forma asistida,
o cddigo que debe seguir patrones estrictos,
o Y partes del sistema que no deberian tocarse sin supervision.

o Definicion de qué repositorios, ramas, librerias y documentacion forman
realmente parte del sistema de desarrollo gobernado.

e Claridad sobre qué conocimiento técnico puede usarse como contexto o
entrenamiento y cual no, evitando mezclar legado, excepciones vy
decisiones obsoletas.

e Unmarco comun entre arquitectos y desarrolladores para trabajar con |IA sin
perder coherencia técnica ni control del sistema.

El valor de estas primeras fases no esta en programar mas rapido, sino en evitar
que la IA introduzca deuda técnica acelerada que luego es muy costosa de
revertir.

Manuel j. Gonzalez Ldépez Pagina 15|43

Al-First Governed Software Development

En desarrollo, el problema no es que la IA genere cddigo. El problema es qué
decisiones técnicas esta tomando mientras lo genera y si el sistema esta
preparado para asumirlas.

Fase 1 Diagndstico de gobernabilidad y evolucién del software

La Fase 1 no analiza herramientas ni modelos.

Analiza si el sistema de software y el sistema de desarrollo pueden soportar la
entrada de la |IA sin perder control.

Antes de decidir como usar IA, hay que entender dénde, para qué y con qué
impacto. Esta fase es deliberadamente contextual. No existe un diagndstico unico
valido para todas las organizaciones.

1. Identificar el tipo de organizacidon y su modelo de desarrollo

Lo primero es entender qué tipo de organizacién tenemos delante, porque eso
condiciona todo lo demas.

Por ejemplo:

e Software factory
Desarrollo para terceros, presion de plazos, rotacidn alta, multiples
arquitecturas.
e Empresade producto / ERP / software propio
El codigo es un activo comercial. Importan versiones, compatibilidad y
evolucion a largo plazo.
e Empresa SaaS
Cambios continuos, impacto directo en clientes, despliegue frecuente.
e Gran corporacion con desarrollo a medida
(banca, seguros, logistica, industria)
Sistemas criticos, legacy, regulacion, multiples equiposy
dependencias.

Aqui no se juzga. Se establece el marco real de trabajo.

Manuel j. Gonzalez Lépez Pagina 16|43

Al-First Governed Software Development

2. Entender el sectory el impacto del software

No es lo mismo desarrollar software para:

e unaadministracion publica,
e un hospital,

e un laboratorio,

e unaentidad financiera,

e una plataforma logistica.

En este punto se evalua:

nivel de regulacion,
e impacto en personas o negocio,

tolerancia al error,

necesidad de trazabilidad y auditoria.

La gobernabilidad es proporcional al impacto, no a la tecnologia.

3. Clasificar el tipo de software existente y futuro

Este es uno de los puntos mas criticos del diagndstico. Se distingue explicitamente
entre:

a) Software existente / legacy

e mantenimiento,

e correctivos,

e pequefios evolutivos,

e sistemas con alta dependencia histdrica.

Aqui el objetivo no es acelerar, sino no romper. La IA se usa, si se usa, de forma
conteniday controlada.

b) Componentes simples o periféricos

e CRUDs,

e integraciones,

e |lamadas a servicios externos,
e procesos BPM,

e lOgica determinista.

Aqui la IA puede aportar velocidad con riesgo bajo, y no tiene sentido
sobredimensionar el método.

Manuel j. Gonzalez Lépez Pagina 17]43

Al-First Governed Software Development

c) Software estructural o de producto

e aplicaciones de gestion,
e ERPs,

e plataformas,

e core systems.

Este software va a llevar |A integrada:

e paradecisiones,

e calculos,

e recomendaciones,

e comportamiento adaptativo.

Aqui la IA no es un anadido, es parte del disefio del sistema. El nivel de

gobernabilidad exigido es maximo.

4. Analizar como entra hoy la |A en el desarrollo

Solo después de entender el contexto se analiza:

e doénde se usa lA actualmente,

e paraqué se usa (copilot, generacion, refactorizacién, soporte),

e con qué modelos,
e con qué controles (si existen),
e yquiénlausarealmente.

Aqui suelen aparecer:

e prompts personales,

e decisiones técnicas implicitas,
e dependencia de herramientas,
e ausencia de criterios comunes.

5. Localizar donde vive hoy el control

Este punto es clave y normalmente incoémodo. Se analiza:

e silaarquitectura vive en personas, documentos o herramientas,

e sielconocimiento es explicito o implicito,

e silacoherencia depende solo de revisiones humanas,

e sjexisten puntos claros donde se puede decir “esto no”.

No se busca culpables. Se mapea la realidad.

Manuel j. Gonzéalez Ldépez

Pagina 18|43

Al-First Governed Software Development

6. Evaluar la preparacion para software con |IA integrada

Dado que el futuro del software incluye IA embebida, se analiza:

qué decisiones podrian quedar dentro del propio software,
qué comportamiento sera probabilistico,

qué impacto tendra eso en negocio y usuarios,

qué nivel de explicabilidad y trazabilidad sera exigible,

qué partes del sistema no deberian aprender.

Este analisis condiciona todas las fases posteriores.

Qué se obtiene de la Fase 1

La Fase 1 no produce un informe genérico. Produce claridad.

Permite responder con honestidad a preguntas como:

¢ Dénde podemos acelerar sin riesgo?

¢, Doénde la velocidad seria peligrosa?

¢Qué software no debe tocarse todavia?

¢Qué parte del sistema va a integrar IA de forma estructural?
¢ Dénde perderiamos el control primero?

Artefactos de la Fase 1

Artefacto 1 Mapa de gobernabilidad y evolucion del software

Incluye:

tipo de organizacion,

sector e impacto,

clasificacion del software (legacy, simple, estructural),
uso real de IA,

puntos de decision criticos,

riesgos técnicos y organizativos,

primeras lineas rojas.

Este mapa condiciona el resto del método.

Manuel j. Gonzéalez Ldépez

Pagina 19|43

Al-First Governed Software Development

Artefacto 2 — Matriz de riesgo y aceleracion

Relaciona:

tipo de software,

nivel de automatizacion posible,

impacto de error,

nivel de control requerido.
Sirve para decidir:

e dodnde acelerarya,
e dodndeirdespacio,
e yddénde no usar IA todavia.

Checklist

Diagnéstico de gobernabilidad y evolucion

Antes de introducir o escalar IA en el desarrollo, debe poder responderse si a lo
siguiente:

Contexto y tipo de organizacion

[J Esta identificado el tipo de organizacién (producto, SaaS, software factory,
corporacion).

[1 Esta identificado el sector y el impacto del software.

[1 Esta claro qué papel juega el software en el negocio.
Tipologia de software

O] El software esta clasificado en:

e legacy/ mantenimiento,
e compohentes simples,
e software estructural o core.

1 Esta definido qué software no debe tocarse con IA.
[1 Esta definido dénde la |A puede aportar valor sin riesgo.
Uso actual de IA
[1Se sabe donde y como se esta usando |A hoy.
1 Se identifican dependencias implicitas (prompts, personas, herramientas).

(1 Existen decisiones técnicas que hoy se toman sin criterio comun.
Manuel j. Gonzalez Lépez Pagina 20|43

Al-First Governed Software Development

Preparacion para lA integrada
(] Esta identificado qué software incorporara |IA de forma estructural.
[1Se conocen los riesgos de trazabilidad, impacto y responsabilidad.
[0 Se han definido primeras lineas rojas.

Nota sobre excepciones y responsabilidad

[0 Las excepciones al marco definido estan permitidas, pero no implicitas.
[0 Toda excepcion relevante tiene un responsable técnico explicito.

[1La excepcion queda registrada junto con su justificacion.

[1Se define si la excepcion es:

e puntual,
e temporal,
e estructural.

[1 Existe un criterio claro para revisar o retirar la excepcidn cuando el sistema
evoluciona.

Sino se cumple este checklist, no se pasara a la Fase 2.

Si esta fase se hace mal, el resto del método se convierte en genérico. Si se hace
bien, todo lo demas encaja.

La Fase 1 no busca justificareluso de IA. Busca evitar errores estructurales antes
de aumentar la velocidad.

Fase 2 Definicién del sistema de desarrollo asistido por IA

La Fase 2 consiste en disenar explicitamente como debe funcionar el desarrollo
asistido por IA en ese contexto concreto, no en abstracto.

Estafase depende totalmente de la Fase 1. No existe un Unico sistema de desarrollo
valido para todos los tipos de software ni para todas las organizaciones.

Aqui no se decide “usar IA”. Aqui se decide donde, como y hasta dénde.

Manuel j. Gonzalez Lépez Pagina 21|43

Al-First Governed Software Development

1. Determinar qué software puede y qué software no puede usar IA

El primer paso no es tecnoldgico, es de descarte. A partir del mapa obtenido en la
Fase 1, se distingue claramente:

a) Software existente / legacy
En muchos casos:

e no puede integrar IA de forma estructural,
e noesrentable redisenarlo,
e elriesgo supera el beneficio.

Aqui pueden darse varios escenarios validos:

e nousarlAeneldesarrollo, y seguir manteniendo manualmente;
e usarlA solo como apoyo en el IDE para pequefas correcciones;
e limitar la IA atareas muy concretasy reversibles.

Forzar la IA en este contexto suele ser un error.

b) Software normalizado y bien estructurado
Si el software:

e esta bien modularizado,
e tiene arquitectura clara,
e versiones controladas,

e ypatrones consistentes,

entonces si puede beneficiarse del desarrollo asistido por IA, siempre que se haga
bajo reglas claras. Aquila Fase 2 empieza a tener peso real.

c) Nuevo software o software estructural
En aplicaciones de gestion, ERPs, plataformas o core systems:

e lalAva aestarintegrada en el propio software,
e vaainfluir en decisiones, procesos y comportamiento,
e ycondiciona arquitectura, datos y responsabilidad.

Aqui el sistema de desarrollo tiene que disenarse desde el inicio para convivir con
IA, no para afiadirla después.

Manuel j. Gonzalez Lépez Pagina 22|43

Al-First Governed Software Development

2. Analizar el contexto organizativo del desarrollo

Especialmente importante en software factories.
Aqui hay que distinguir con claridad:

e desarrollo sobre arquitectura propia,
e desarrollo sobre arquitectura del cliente.

Cuando se trabaja sobre arquitectura del cliente:

e existen restricciones de confidencialidad,
e propiedad intelectual,

e licencias,

e yposibles conflictos legales.

En estos casos:

e notodo el codigo puede usarse como contexto,
e notodo puede alimentar modelos,
e ynosiempre esviable usar herramientas externas.

Definir el sistema de desarrollo sin revisar estos limites es un riesgo legal, no
solo técnico.

3. Validar el marco legaly contractual
Antes de definir reglas técnicas, se aclara:
e qué codigo es reutilizable,
e qué codigo es confidencial,
e qué acuerdos existen con clientes,
e qué licencias aplican,
e qué datos o conocimiento no pueden salir del perimetro.

Esto condiciona directamente:

e sise pueden usar modelos externos,
e sjideben ser modelos locales,

e uétipo de entrenamiento es posible.

Aqui no se improvisa.

Manuel j. Gonzalez Lépez Pagina 23|43

Al-First Governed Software Development

4. Definir el marco de referencia técnico

Solo cuando los limites estan claros se define el sistema de desarrollo en si.

Incluye:

e arquitectura de referencia (qué entendemos por “arquitectura” en este

contexto),
e componentes permitidos,
e integraciones oficiales,
e patrones de disefo vigentes,
e versiones exactas de frameworks y librerias,
e reglas de compatibilidad entre versiones.

La arquitectura no es solo codigo:

e incluye dénde se despliega,

e como se ejecuta,

e siescloud, on-premise o hibrido,

e sihayrestricciones de latencia, seguridad o conectividad.

5. Definir como entra la IA en el desarrollo

Aqui se concreta como se usa la |IA, no de forma genérica.

explicitamente:

e paraqué tareas puede usarse,
e enqué tipo de proyectos,

e conqué limites,

e bajo qué supervision.

No es lo mismo:

e usar |A para generarun CRUD,
e que para modificar un core financiero,
e que para generar codigo que luego aprendera.

Cada caso tiene reglas distintas.

Se

define

Manuel j. Gonzalez Lépez Pagina 24|43

Al-First Governed Software Development

6. Anticipar la IA integrada en el propio software

En software que va a llevar IA embebida:

e se anticipa qué tipo de modelos se usaran,
e siseran comerciales, open source o locales,
e donde se ejecutaran,

e ycoémo condicionan la arquitectura.

Esto no es el modelo del IDE, es el modelo que vivira dentro del sistema. El sistema

de desarrollo debe ser compatible con esa realidad futura.

7. Qué se obtiene de la Fase 2

Al finalizar esta fase, la organizacion sabe:

e qué software puede usarlAy cual no,

e qué tipo de desarrollo asistido es viable,
e bajo qué limites técnicosy legales,

e Qué arquitectura se protege,

e yquénodebe tocarse.

Esto evita errores caros antes de escalar velocidad.

Artefacto clave de la Fase 2

Contrato del sistema de desarrollo asistido por IA Incluye:

e clasificacion de aplicaciones,

e reglas de uso de |IA por tipo de software,
e limites técnicosy legales,

e arquitecturay versiones de referencia,
e criterios de supervision,

e exclusiones explicitas.

Este contrato:

e alineaequipos,
e protege conocimiento,
e yevitadecisiones implicitas.

Manuel j. Gonzéalez Ldépez

Pagina 25|43

Al-First Governed Software Development

Checklist

Definicion del sistema de desarrollo asistido por IA Antes de permitir desarrollo
asistido a escala, debe existir:

Alcance y limites

(1 Esta definido qué software puede usar IAy cual no.

1 Esta claro si la IA se usa solo como asistente o como parte estructural.

[1 Existen exclusiones explicitas (no ambiguas).

Arquitectura de referencia

1 Existe una arquitectura de referencia definida.

[1 Estan definidos patrones y criterios técnicos obligatorios.

[0 La arquitectura incluye despliegue, ejecucion y entorno (cloud, on-prem,
hibrido).

Marco legal y contractual

[1 Esta claro qué codigo es propio y reutilizable.
[1 Estan definidos limites por confidencialidad y licencias.
[1Se havalidado el uso de modelos externos o locales.

Uso de IA en desarrollo

[1 Esta definido para qué tareas puede usarse |A.
(1 Estan definidos los limites por tipo de software.
[1 Existe supervision explicita en zonas criticas.

Nota sobre excepciones y responsabilidad

1 Las excepciones al marco definido estan permitidas, pero no implicitas.
[0 Toda excepcion relevante tiene un responsable técnico explicito.

[1La excepcidn queda registrada junto con su justificacion.

[1Se define si la excepcion es:

e puntual,
e temporal,
e estructural.

1 Existe un criterio claro para revisar o retirar la excepciodn cuando el sistema
evoluciona.

Sin este checklist, la IA entra por donde puede, no por donde debe.

Manuel j. Gonzalez Ldépez Pagina 26|43

Al-First Governed Software Development

La Fase 2 no busca estandarizar por comodidad. Busca disefAar un sistema de
desarrollo coherente con la realidad del software y de la organizacion. Sin esta
fase: la IA entra por donde puede, no por donde debe. Y eso, a medio plazo,
siempre se paga.

Fase 3 Gobierno del codigo y del modelo de desarrollo

La Fase 3 establece qué cddigo y qué conocimiento puede usar la IA, bajo qué
reglas y con qué garantias de coherencia en el tiempo.

Aqui se asume una realidad basica: el cédigo no vive en un unico sitio ni en una
Unica version, y sin gobierno explicito la IA acabara aprendiendo de lo que no debe.

Esta fase no trata de herramientas. Trata de controlar la fuente del conocimiento
técnico.

1. Definir qué repositorios forman parte del sistema gobernado
El primer paso es delimitar qué repositorios entran dentro del perimetro de
gobierno.

Normalmente existen:

e repositorios privados,

e multiples proyectos,

e repositorios compartidos,

e forks histéricos,

e ycobdigo con distintos niveles de calidad.

Aqui se define explicitamente:

e qué repositorios son referencia valida,
e cuales quedan fuera,
e ycuales solo pueden usarse como contexto limitado.

No todo el codigo de la organizacidn es conocimiento reutilizable.

Manuel j. Gonzalez Lépez Pagina 27|43

Al-First Governed Software Development

2. Definir reglas claras de versionado y ramas

Este es uno de los puntos mas criticos y mas ignorados. En un mismo repositorio
puede haber:

e decenas de ramas,

e codigo experimental,

e hotfixes,

e versiones antiguas,

e refactorizaciones incompletas.

La metodologia exige definir explicitamente:
e quérama es fuente de verdad para:

o entrenamiento,

o adaptacion,

o aprendizaje,

o generacioén de codigo.

Ejemplos validos:

e sololaramaen produccioén,

e solo main o master,

e unarama especifica de referencia,
e unarama consolidada por version.

Lo importante no es cual se elija. Lo importante es que no sea ambiguo. La IA no
distingue entre estable y provisional si ho se le dice.

3. Gobierno del codigo propio

Aqui se define como se trata el codigo interno. Se establece:

e qué codigo es valido y actual,

e qué codigo es legado,

e qué codigo esta obsoleto,

e qué codigo no debe reutilizarse nunca.

Esto permite:

e evitar que el modelo aprenda decisiones antiguas,
e mantener coherencia arquitectonica,
e yreducirregresiones silenciosas.

El codigo se convierte explicitamente en dato gobernado.

Manuel j. Gonzalez Lépez Pagina 28|43

Al-First Governed Software Development

4. Gobierno del codigo de frameworks y dependencias

El gobierno no se limita al cédigo propio. Para cada arquitectura se define:

e gué frameworks se usan,
e coON qué versiones exactas,
e yqué codigo fuente de esos frameworks es referencia valida.

Por ejemplo:

e Spring Boot versiéon concreta,

e NestJS versidn concreta,

e Node version concreta,

e librerias internas homologadas.

No se permite:

e mezclarversiones,
e asumir compatibilidad implicita,
e nidejarque el modelo “improvise”.

El modelo debe aprender solo del ecosistema que realmente existe.

5. Gobierno de la documentacion como parte del conocimiento

El cddigo no es suficiente. Para que el desarrollo asistido funcione correctamente,
también se gobierna:

e documentacion interna,

e guias de uso de componentes,

e normas de seguridad,

e decisiones de diseno,

e documentacion oficial de frameworks (versionada).

Toda esa informacion:

o forma parte del contexto,
e influye en la generacion,
e ydebe estar alineada con el cédigo.

Cdédigo y documentacion no pueden evolucionar de forma independiente.

Manuel j. Gonzalez Lépez Pagina 29|43

Al-First Governed Software Development

6. Definir qué conocimiento puede usarse para entrenamiento o
adaptacion

Aqui se toma una decision critica:

e qué codigoydocumentacién pueden alimentar entrenamiento,
e qué solo pueden usarse como referencia,
e yqué queda excluido.

Esto aplica tanto a:

e adaptacién de modelos,
e como acualquier forma de aprendizaje incremental.

Mas contexto no es mejor contexto.

7. Implicaciones sobre el modelo de desarrollo

En esta fase se empieza a tratar el modelo como un componente gobernado, no
COmo una caja negra.

Se define:

e gué modelo o modelos se usan,
e coOn qué proposito,

e bajo qué contexto,

e ycon qué versiones.

Esto no es todavia observabilidad (eso viene después), pero si es control previo.

Responsabilidades que aparecen en la Fase 3

Aqui si aparecen responsabilidades nuevas, aunque no necesariamente roles
nuevos. Estas responsabilidades suelen recaer en:

e elequipo de arquitectura,
o perfiles con visiéon transversal del sistema.

Incluyen:

o definirreglas de versionado validas,
e decidir qué cédigo es referencia,

e proteger coherencia arquitectonica,
e yevitar aprendizaje incorrecto.

En organizaciones grandes puede haber varios responsables. En pymes, una sola
persona puede asumirlo. El método no impone estructura, hace explicito lo que
debe decidirse.

Manuel j. Gonzalez Lépez Pagina 30|43

Al-First Governed Software Development

Qué se obtiene de la Fase 3

Al finalizar esta fase, la organizacidn tiene claro:

e ué codigo es conocimiento valido,

e Qué versiones son referencia,

e qué puede aprender el sistema,

e quénodebe tocarse,

e ycOmo evitar degradacion progresiva.

Esto reduce drasticamente:

e incoherencias,
e regresiones,
e ydependenciade personas concretas.

Artefactos de la Fase 3

Artefacto 1 — Politica de cdédigo como dato
e repositorios validos,
e ramas de referencia,
e clasificaciéon de cédigo,
e exclusiones explicitas.

Artefacto 2 — Marco de versiones y dependencias
o frameworks permitidos,
e versiones exactas,
e cddigo fuente de referencia.

Artefacto 3 — Politica de conocimiento reutilizable
e caddigo,
e documentacion,
e decisiones de diseno,
e limites de uso.

Manuel j. Gonzalez Ldépez

Pagina 31|43

Al-First Governed Software Development

Checklist

Gobierno del cddigo y del modelo antes de permitir aprendizaje o generacion
sistematica, debe existir:

Repositorios y versiones

[0 Estan definidos los repositorios que forman parte del sistema gobernado.
[1 Esta definida la rama de referencia para aprendizaje y generacion.
[1 Cddigo experimental y provisional esta excluido explicitamente.

Cdédigo como dato

1 El cédigo esta clasificado (valido, legado, obsoleto).

[1 Esta definido qué codigo puede reutilizarse como conocimiento.

[1 Esta definido qué codigo no debe usarse nunca como referencia.
Frameworks y dependencias

[0 Estan definidas versiones exactas de frameworks y librerias.

[0 Esta claro qué cadigo fuente externo es referencia valida.

1 No se permite mezcla implicita de versiones.
Documentacion

[0 La documentacion forma parte del contexto gobernado.
[0 Cédigo y documentacidn estan alineados en versiones y criterios.
Nota sobre excepciones y responsabilidad

1 Las excepciones al marco definido estan permitidas, pero no implicitas.
[Toda excepcion relevante tiene un responsable técnico explicito.

[1La excepcion queda registrada junto con su justificacion.

[1Se define si la excepcion es:

e puntual,
e temporal,
e estructural.

[1 Existe un criterio claro para revisar o retirar la excepcion cuando el sistema
evoluciona.

[0 Esta claro quién puede autorizar excepciones al uso de cdédigo, librerias o
contexto de entrenamiento.

Si este checklist falla, el sistema aprendera de lo que no debe.

Sin gobierno del cédigo y del modelo, la IA aprende lo que no debe, la arquitectura
se degrada y los errores aparecen tarde. Esta fase no ralentiza el desarrollo. Evita
que la velocidad rompa el sistema desde dentro.

Manuel j. Gonzalez Ldépez Pagina 32|43

Al-First Governed Software Development

Fase 4 Observabilidad y control del desarrollo
asistido por IA

Unavez que el cédigo se trata como dato (Fase 3), no basta con gobernar qué entra.
Es imprescindible observar qué ocurre cuando la IA genera, modifica o propone
coédigo.

Esta fase existe para una idea muy concreta. Si no puedes observar como se
genera el software, no puedes gobernarlo ni corregirlo.

1. Qué significa observabilidad en este contexto

Observabilidad no es logging técnico. Aqui significa poder responder, en cualquier
momento, a preguntas como:

e ;Quédecisiéontomo la IA?

e ;Con qué contexto?

e ¢;Bajo qué reglas?

e ;Conqué version del modelo?

e ;Qué codigo gener6 exactamente?

e (;Qué acabod entrando en el repositorio?
e Qué sedescartéyporqué?

Sin estas respuestas, el sistema puede funcionar, pero no puede auditarse ni
evolucionar de forma controlada.

2. Registrar la generacién como un evento gobernado

Cadavez que la lA:

e genera codigo,

e modifica codigo,

e propone un refactor,

e sugiere una estructura,

eso debe tratarse como un evento del sistema, no como algo efimero del IDE.
Ese evento debe registrar, como minimo:

e contexto utilizado,

e reglas activas,

e version del modelo,

e tipo de accion (generar, modificar, sugerir),
e resultado generado.

Manuel j. Gonzalez Lépez Pagina 33|43

Al-First Governed Software Development

Esto no obliga a aceptar ese codigo. Pero si permite entender qué paso.

3. Relacionar generacion, decision y resultado final

Uno de los puntos mas potentes de esta fase es que permite cerrar el ciclo:

e quégenerdlalA,

e Qué se acepto,

e qué se modifico,

e yqué acabd en produccion.

Esto permite:

e confrontar decisiones con resultados reales,
e detectar patrones de error,

e identificar desviaciones de arquitectura,

e yentender degradaciones progresivas.

Aqui es donde el sistema empieza a aprender de verdad, no de forma ciega.

4. Auditar y monitorizar el comportamiento del sistema de desarrollo

Altener trazabilidad completa, se pueden construir mecanismos de:

e auditoria técnica,

e analisis de coherencia,

e deteccidén de anomalias,

e comparacion entre versiones del modelo,
e validacidon de cumplimiento de reglas.

No parafiscalizar personas, sino para evaluar el comportamiento del sistema. La |IA
y los agentes deben observarse igual que cualquier otro componente critico.

5. Extraer conocimiento y normas a partir de la observacion

La observabilidad no es solo defensiva. Es una fuente de mejora. A partir de los
datos observados se puede:

o detectar errores recurrentes,

o identificar reglas mal definidas,

e ajustar contextoy versiones,

e mejorar el sistema de desarrollo,

o definir nuevas restricciones o guias.

Esto permite evolucidon basada en evidencia, no en sensaciones.

Manuel j. Gonzalez Lépez Pagina 34|43

Al-First Governed Software Development

6. Diferenciar claramente observabilidad de aprendizaje

Muy importante: observar no implica aprender automaticamente. En esta fase:

e serecopila,
e seanaliza,
e secompara.

El aprendizaje vendra después, en la Fase 5, y solo cuando esté explicitamente
autorizado.

Esta separacion evita uno de los errores mas comunes: confundir feedback con
autoaprendizaje descontrolado.

Qué se obtiene de la Fase 4

Al finalizar esta fase, la organizacidn tiene:

e trazabilidad completa del desarrollo asistido,
e capacidad de auditar decisiones técnicas,

e visibilidad real del comportamiento de la IA,
e evidencia objetiva para corregir desviaciones,
e ycontrol sobre cémo evoluciona el sistema.

Sin esta fase, el sistema puede ser rapido. Pero es opaco.

Artefactos de la Fase 4

Artefacto 1 — Registro de eventos de generacion
e decisiones,
e contexto,
e reglas,
e modelo,
e resultados.

Artefacto 2 — Mapa de trazabilidad decision—codigo
e Qué se genero,
e qué se acepto,
e qué llegd alrepositorio.

Artefacto 3— Métricas de coherencia y desviacion

patrones incorrectos,

regresiones,

incompatibilidades,

degradacién progresiva.

Manuel j. Gonzalez Lépez Pagina 35|43

Al-First Governed Software Development

Checklist

Observabilidad y trazabilidad antes de permitir aprendizaje o automatizacion
avanzada, debe existir:

Registro de generacion

[0 Cada generacién de cddigo se registra como evento.

[1 Se guarda contexto, reglas y version del modelo.

[1 Se diferencia codigo generado, aceptado y descartado.
Trazabilidad

[0 Puede reconstruirse por qué se generd un codigo.

1 Puede compararse comportamiento entre versiones.

[0 Puede auditarse una decisién técnica a posteriori.
Monitorizacion

1 Existen métricas de coherencia arquitectdnica.

[1Se detectan desviaciones y regresiones.

1 Los errores no dependen solo de revisiones humanas.
Nota sobre excepciones y responsabilidad

1 Las excepciones al marco definido estan permitidas, pero no implicitas.
[0 Toda excepcion relevante tiene un responsable técnico explicito.

[1La excepcion queda registrada junto con su justificacion.

[1 Se define si la excepcidn es:

e puntual,
e temporal,
e estructural.

(] Existe un criterio claro para revisar o retirar la excepcion cuando el sistema
evoluciona.

1 Existen mecanismos de revisién del cédigo generado o modificado con IA, mas
alla de la ejecucion de tests técnicos.

[Los resultados de estas revisiones (automatizadas o asistidas por |IA) pueden
relacionarse con el codigo finaly las decisiones tomadas.

Sin observabilidad, no hay control ni aprendizaje fiable.

Manuel j. Gonzalez Lépez Pagina 36|43

Al-First Governed Software Development

Tratar el software como dato implica observar como se produce, no solo
almacenarlo. La IA no puede ser una caja negra dentro del desarrollo. Debe ser
observable, auditable y comparable.

Esta fase no ralentiza. Permite corregir antes de que el problema sea
estructural.

Fase 5 Aprendizaje gobernado y evolucion del
sistema

La Fase 5 no trata de “hacer que la IA aprenda mas”. Trata de permitir que el
sistema evolucione sin perder control.

Esta fase solo tiene sentido cuando:

e elcddigo ya se gobierna como dato,
e elsistemaes observable,

e las decisiones son trazables,

o ylasresponsabilidades estan claras.

Por eso es la culminaciéon del método.
1. El objetivo real de esta fase
El desarrollo de software ha cambiado de paradigma. El cédigo ya no es solo:

e algo que se escribe,
e secompila,
e yse mantiene.

Es:

un activo vivo,
una fuente de conocimiento,

y parte del sistema que aprende y evoluciona.

La Fase 5 existe para responder a una necesidad muy concreta: Codmo permitir
que el sistema mejore con el tiempo sin que ese aprendizaje se vuelva opaco,
incontrolable o peligroso.

Manuel j. Gonzalez Lépez Pagina 37|43

Al-First Governed Software Development

2. Aprender es inevitable, hacerlo sin control no

Los frameworks evolucionan, componentes cambian, modelos mejoran y las
necesidades de negocio se transforman. Si el sistema no evoluciona:

e sequedaobsoleto,
e sevuelverigido,
e yacabarompiéndose.

Pero si aprende sin control:

e degrada arquitectura,
e introduce incoherencias,
e ygeneradependencia invisible.

El aprendizaje no es opcional. El aprendizaje descontrolado si lo es.

3. Qué significa “aprendizaje gobernado”

Aprendizaje gobernado significa que nada aprende por accidente. Se define
explicitamente:

e qué puede aprender el sistema,

e cuando puede aprender,

e apartirde qué informacidn,

e bajo qué validacién humana,

e ycon qué capacidad de reversion.

Aprender no es un efecto colateral del uso. Es una decision de disefo.

4. El papel central del desarrollador (Human-in-the-Loop)
Esta fase deja algo muy claro: el desarrollador no desaparece. Su rol cambia,
pero se vuelve mas critico que nunca.

El desarrollador:

e supervisa decisiones,

e validaresultados,

e detecta errores de criterio,

e aporta contexto que lalA no tiene,
e ydecide qué aprendizaje es valido.

La IA no sustituye criterio técnico. Lo amplifica cuando esta bien disenado.

El Human-in-the-Loop no es un requisito normativo. Es una condicion técnica
para que el sistema no se degrade.

Manuel j. Gonzalez Lépez Pagina 38|43

Al-First Governed Software Development

5. Fuentes validas de aprendizaje

El sistema no aprende de todo, aprende de lo que se decide. Fuentes habituales:

e decisiones humanas aceptadas o rechazadas,
e correcciones manuales al cédigo generado,

o feedback explicito de desarrolladores,

e incidencias detectadas en produccion,

e cambios de versiéon deliberados,

e ajustes arquitecténicos validados.

Todo aprendizaje:

e parte de eventos observados (Fase 4),
e ypasa porvalidacién humana.

6. Evolucion frente a obsolescencia

Esta fase permite que el sistema:

e incorpore nuevas versiones de frameworks,
e adapte patrones cuando cambia el contexto,
e mejore sucomportamiento con el tiempo,

e sin arrastrar decisiones antiguas.

La evolucidon no es automatica. Es progresivay reversible. Sialgo empeora:

e sedetecta,
e seanaliza,
e yserevierte.
7. Cambios de roles y responsabilidades (sin ruptura)

Aqui se consolida el cambio de paradigma:

e menos foco en escribir cédigo lineo a linea,

e masfoco en disefo, validaciény supervision,
e mas responsabilidad en definir criterios,

e menos dependencia de memoria individual.

No se elimina al desarrollador. Se elimina la fragilidad del sistema.

Manuel j. Gonzalez Lépez Pagina 39|43

Al-First Governed Software Development

Qué se obtiene al completar la Fase 5

Cuando esta fase esta bien implantada:

e elsistema mejora con eltiempo,

e lavelocidad no degrada la calidad,

e lalAdejade seruna cajanegra,

e los cambios son explicables,

e yelconocimiento no se pierde con la rotacion.

La organizacion aprende sin perder control.

Artefactos de la Fase 5

Artefacto 1 Politica de aprendizaje gobernado
e gué aprende,
e cuando,
e quiénvalida,
e cOmo seversiona,
e cOmo se revierte.

Artefacto 2 Ciclo de feedback humano

o decisiones aceptadas/rechazadas,
e correcciones,
e aportaciones del equipo.

Artefacto 3 Registro de evolucion del sistema

e cambios de criterio,
e mejoras,

e regresiones,

e causas identificadas.

Checklist

Aprendizaje gobernado y evolucién, antes de permitir que el sistema evolucione
automaticamente, debe existir:

Decision explicita de aprendizaje

[1 Esta definido qué puede aprender el sistema.

[1 Esta definido cuando puede aprender.

[1 Esta definido qué eventos alimentan el aprendizaje.
Validacion humana

[1 Existe validacién humana antes de incorporar aprendizaje.

1 El desarrollador actua como supervisor (human-in-the-loop).

1 Elfeedback humano se registra como sefial valida.

Manuel j. Gonzalez Lépez Pagina 40|43

Al-First Governed Software Development

Evoluciény reversion

[0 El aprendizaje esta versionado.
1 Puede revertirse un cambio si degrada el sistema.
[La evolucion no rompe compatibilidad ni arquitectura.

Nota sobre excepciones y responsabilidad

[0 Las excepciones al marco definido estan permitidas, pero no implicitas.
[0 Toda excepcion relevante tiene un responsable técnico explicito.

[1La excepcion queda registrada junto con su justificacion.

[1Se define si la excepcion es:

e puntual,
e temporal,
e estructural.

[Existe un criterio claro para revisar o retirar la excepcion cuando el sistema
evoluciona.

[0 Esta claro quién valida qué decisiones humanas pueden incorporarse como
aprendizaje del sistema.

1 Los resultados de revisiones de calidad y validacién técnica se utilizan como
entrada para ajustar reglas, contexto o aprendizaje del sistema.

Si este checklist no se cumple, el sistema se degrada aunque “aprenda”.

El objetivo final del Al-First aplicado al desarrollo no es automatizar personas.
Es disenar sistemas que evolucionen sin perder criterio humano. La IA puede
generar, proponer y ejecutar. Pero el juicio sigue siendo humano. Sin esta fase, el
sistema se congela o se degrada. Con ella, el sistema se adapta sin romperse.

Manuel j. Gonzalez Lépez Pagina 41]43

Al-First Governed Software Development

Una visién practica del desarrollo Al-First
La IA esta cambiando el desarrollo de software. Eso no es discutible.

Esta cambiando la forma de escribir cédigo, la velocidad a la que se construyen
soluciones y la manera en que se organizan los equipos. También esta
introduciendo nuevos perfiles, nuevas dindmicasy posibilidades técnicas que hace
pocos anos no existian.

Pero hay una confusion peligrosa en el discurso actual: confundir
automatizacion de tareas con desaparicion de responsabilidades.

El hecho de que hoy podamos generar cédigo con agentes, auditarlo con otros
agentes y acelerar procesos completos no elimina la necesidad de entender el
sistema, de gobernarlo y de responder por él cuando estd en produccion. Al
contrario: a mayor potencia, mayor necesidad de control.

Los modelos actuales (por muy avanzados que sean) siguen siendo modelos
entrenados mayoritariamente sobre repositorios publicos, con todo lo que eso
implica: codigo de calidad desigual, patrones contradictorios, decisiones
heredadas y soluciones validas fuera de contexto. En escenarios simples, esto
puede ser suficiente. En sistemas complejos o criticos, no lo es.

La IA aplicada al desarrollo aporta una capacidad extraordinaria. Pero la potencia
sin control no acelera el progreso: acelera los errores.

Por eso esta metodologia no intenta frenar el uso de IA, ni idealizar formas de
trabajo pasadas. Lo que hace es ordenar algo que, en realidad, siempre ha existido:
la necesidad de arquitectura, de normalizacion, de gobierno y de responsabilidad
cuando el software es importante.

Muchas de las practicas que aqui se describen no son nuevas. Son sentido comun
aplicado durante afios en sistemas que debian mantenerse, evolucionary escalar.
La diferencia es que ahora el cédigo deja de ser solo un resultado y pasa a tratarse
como dato: se reutiliza, se analiza, se audita y se convierte en parte activa del
conocimiento del sistema. Y eso exige gobierno.

También es importante aclarar algo: la adopcion de IA no implica
necesariamente una reducciéon de equipos. Implica una reorganizacion del
trabajo. En equipos sobredimensionados puede haber ajustes. En equipos bien
dimensionados, lo que cambia es el foco: menos esfuerzo en tareas mecanicas y
mas responsabilidad en supervisioén, validacién, disefio y control.

Manuel j. Gonzalez Ldépez Pagina 42|43

Al-First Governed Software Development

El desarrollador no desaparece.
El arquitecto no desaparece.
El factor humano no desaparece.

Lo que desaparece es la excusa de improvisar sin consecuencias.

Elverdaderovalorde lalAno estd en usar modelos cadavez mas grandes que saben
un poco de todo. Esta en la especializacidn, en la adaptacién al contexto real de
una organizacion, en el uso de modelos entrenados o ajustados a una arquitectura,
unos patrones y unas decisiones claras. Y eso, lejos de ser inasumible, es
perfectamente viable cuando se aborda con criterio y método.

Decir que “el cédigo ya no tiene valor” es una simplificacion que ignora la realidad
de los sistemas en produccion. El valor no esta en escribir lineas por escribirlas,
pero el valor del cédigo aumenta cuando se convierte en un activo gobernado,
verificable y reutilizable dentro de un sistema bien disefiado.

Esta metodologia no pretende imponer una forma uUnica de trabajar ni ofrecer
recetas universales. Pretende algo mas modesto y dificil: ayudar a que la adopcion
de IA en el desarrollo no rompa aquello que luego hay que mantener.

Porque cuando la IA deja de ser novedad y pasa a ser infraestructura, lo que marca
la diferencia no es quién genera mas rapido, sino quién mantiene el control.

Y eso, hoy mas que nunca, sigue siendo una responsabilidad humana.

Nota final

Este documento nace de experiencia practica en disefo, desarrollo y operacién de
sistemas de software durante mas de 25 anos, aplicando low-code, generacion de
codigo, arquitectura de plataformas y, en los ultimos anos, IA integrada en el ciclo
de desarrollo.

La metodologia esta pensada para ser leida, cuestionada y adaptada a distintos
contextos.

Para conversaciones técnicas, contraste de enfoques o acompanamiento en su
aplicacion:

Manuel J. Gonzalez (CTO- Codeflowx AlS)
LinkedIn: www.linkedin.com/in/manueljgonzalezlopez
Email: mgonzalez@codeflowx.com

Manuel j. Gonzalez Ldépez Pagina 43|43

